Наша кнопка:


Побелка

Вывоз грунта:
ecotrans-m.ru

Теплые полы:
sevsanteh.ru
Текущий раздел: Книги

Тяжелый бетон. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ЗАКОНОМЕРНОСТЕЙ СВЯЗИ МЕЖДУМОДУЛЕМ УПРУГОСТИ И ПРОЧНОСТЬЮ ТЯЖЕЛОГО БЕТОНА


сборные конструкции из предварительно напряженного железобетонаизготовляют преимущественно из тяжелых бетонов марок 400—500.

ИЗМЕНЕНИЕ ВО ВРЕМЕНИ ПРОЧНОСТНЫХ И ДЕФОРМАТИВНЫХ СВОЙСТВ БЕТОНА.

Справедливость полученного выражения (V. 13) была проверена методом, описанным на стр. 84 применительно к цементному камню. старение бетона. ВЛИЯНИЕ СТАРЕНИЯ БЕТОНА НА ЕГО ДЕФОРМАТИВНЫЕ СВОЙСТВА.

Далее отыскивали корреляционные связи для совокупностей опытных точек, нанесенных в координатах Y = = Rx/Ex и X = Rx. Получаемые при этом простые линейные уравнения регрессии позволяют, во-первых, легко судить о наличии и устойчивости корреляционной связи типа (V. 13), а во-вторых, оценивать независимо друг от друга одновременно оба искомых параметра s и ср в выражении (V.13). Поскольку Ект = 5 • 105 рассматривается как константа, эти параметры определяются непосредственно коэффициентами корреляционного уравнения вида (V.14). Деформативность бетона под кратковременной нагрузкой при наличии егосцепления с арматурой.

Обработке по этой методике с помощью ЭЦВМ была подвергнута большая выборка экспериментальных результатов, полученных разными авторами, начиная с 1920 г. Однако далеко не все имеющиеся опытные данные могли быть использованы. Как видно из выражения (V. 14), искомая корреляционная зависимость справедлива только для бетонов, изготовленных на смесях с примерно одинаковым расходом цементного теста и на близких по своим упругим свойствам заполнителях (из условия рт = const и ср = const). Кроме того, для получения надежной корреляционной связи необходимо,  чтобы прочностные характеристики бетонов каждой такой группы изменялись Ё Достаточно широком диапазоне. Прочность и деформация бетона.

Характеристика опытных данных, относящихся к рассматриваемой категории тяжелых бетонов и сгруппированных по признаку рт = const и <р = const, представлена в табл. 6. кубиковая и призменная прочность бетона.

Были проанализированы результаты 525 серий испытаний, включая результаты измерения начального модуля упругости статическим методом при напряжениях порядка о = (0,15—0,25)/?т, где Rx —кубиковая прочность бетона в момент приложения нагрузки. Несмотря на принятые ограничения в отборе этих результатов, в табл. 6 представлены данные, характеризующие большую категорию тяжелых бетонов (в том числе высокопрочных). Общее число примененных в опытах разновидностей портландцементов и заполнителей достигает соответственно 51 и 32, причем хорошо представлены современные отечественные особо быстротвердеющие портландцементы (пять различных партий). Разнообразны были методы уплотнения бетонной смеси (штыкование — группы серий 1—12, обычная вибрация или вибрация с пригрузом — группы серий 19—27, высокочастотная вибрация — группа серий 18, силовой прокат — группа серий 28) и условия твердения бетона до испытания (влажное хранение, твердение в условиях различной атмосферной влажности, тепловлажностная обработка — группы серий 19 и 21). Наряду с обычными тяжелыми бетонами на крупном заполнителе представлены мелкозернистые песчаные (группы серий 20, 21, 26—28). Наконец, в широких пределах варьировался возраст бетона в момент приложения нагрузки (как правило, от 1 до 360 суток), достигая в отдельных случаях десятков лет (группы серий 14—16). свойства характеристики бетона. ОЦЕНКА РОСТА ВО ВРЕМЕНИ ПРОЧНОСТНЫХХАРАКТЕРИСТИК БЕТОНА.

Полученные результаты статистической обработки, которые также приведены в табл. 6, убедительно свидетельствуют о том, что в пределах каждой из групп серий испытаний наблюдается надежная корреляционная связь в форме (V. 1*3) между модулем упругости и прочностью бетона. Коэффициенты корреляции, за редкими исключениями, находятся на очень высоком уровне (г = 0,95-^0,99). При этом указанная форма связи обнаруживается равным образом и в зоне низких (группы серий 1, 6, 8, 22) и в зоне высоких (группы серий 18, 21, 24) прочностных показателей бетона. Таким образом, она достаточно устойчива во всем возможном в настоящее время интервале изменения кубиковой прочности бетона. Примером служат, в частности,   опыты  Сытника  и  Иванова   (группа   серий    25). цемент. СТОЙКОСТЬ БЕТОНА В АГРЕССИВНЫХ СРЕДАХ.

Данные табл. 6 подтверждают также вывод о том, что форма и устойчивость корреляционных связей между Ех и Rx практически не зависят от изменчивости таких факторов, как возраст бетона в момент загружения, свойства портландцемента, гранулометрический состав заполнителей, условия уплотнения и твердения бетона и т. д. В пределах многих групп серий некоторые из этих характеристик варьировались весьма широко. ПРОЧНОСТЬ бетона на растяжение ПРИ ИЗГИБЕ И РАСКАЛЫВАНИИ.

Сытник и Иванов (группа серий 25) определяли модуль упругости на бетоне в возрасте 1, 3, 7, 14, 28, 60, 90, 180, 360 суток. Клигер (группа серий 16) использовал портландцемент 10 типов самого разнообразного минералогического состава. В опытах Джонсона (группа серий 2) один и тот же заполнитель был представлен восемью разными гранулометрическими составами. В опытах Мамийана (группа серий 17) образцы твердели до начала испытания их в разном возрасте в воде и в условиях различной атмосферной влажности (99, 75, 50 и 35%). ОСОБЕННОСТИ ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНЫХ БЕТОНОВ.

Как видно из табл. 6, колебания этих условий в названных, а также других группах серий испытаний не отразились на разбросе опытных точек и величинах корреляционных коэффициентов. В то же время очевидно, что основное влияние на характер связи модуля упругости и прочности бетона оказывают упругие свойства заполнителя и содержание цементного теста в смеси. Это находит выражение в том, что получаемые параметры прямых регрессий а0 и Ьо, соответствующие разным группам серий, различаются весьма существенно. При этом указанное влияние проявляется в полном соответствии с выражениями (V. 13) и(У.14). ХАРАКТЕР ВЗАИМОСВЯЗИ МЕЖДУ ПОЛЗУЧЕСТЬЮ И ПРОЧНОСТЬЮ БЕТОНА.

Данные статистической обработки результатов испытаний двух групп серий (11 и 30) приведены на 39. Поскольку содержание цементного теста в обеих группах серий было принято одинаковое, явное различие корреляционных зависимостей может быть отнесено лишь за счет влияния упругих характеристик заполнителя. Бетонам на граните в опытах Рокача и Кочеткова (группа серий 30) соответствует, как и следовало ожидать, более низкое значение коэффициента Ьо по сравнению с бетонами на гравии в опытах Ричарта и Дженсена (группа серий 11). быстротвердеющий цемент. ОЦЕНКА СВОЙСТВ ПОЛЗУЧЕСТИ ВЫСОКОПРОЧНЫХ БЕТОНОВПРИ ПРОЕКТИРОВАНИИ КОНСТРУКЦИЙ.

Из формулы (V. 14) видно, что различие в упругих свойствах  заполнителя   при   одинаковом   расходе  цементного теста должно привести к повороту корреляционной прямой относительно точки пересечения ее с осью ординат. Поворот по часовой стрелке свидетельствует об увеличении модуля упругости заполнителя. Именно этой закономерности подчиняются зависимости, представленные на 39, а также большинство аналогичных данных табл. 6. усадка бетона. О СВЯЗИ ДЕФОРМАЦИЙ УСАДКИ С ВЛАГОФИЗИЧЕСКИМИ ПРОЦЕССАМИ ВБЕТОНЕ.

Влияние содержания цементного теста в бетоне показано на 40. Здесь сопоставлены результаты обработки опытов Дютрона (группы серий 3 и 5), относящиеся к бетонам на одинаковых заполнителях, но с разным содержанием цементного теста в смеси. При достаточно близких значениях коэффициента Ьо большее значение параметра а0 получено для группы серий 5 с большим содержанием цементного теста. Таким образом, как это и предполагается в соответствии с (V.14), из-за влияния рассматриваемого фактора корреляционная прямая смещается практически параллельно самой себе.

На 41 обобщены данные статистической обработки результатов испытаний всех групп серий. Значения коэффициентов корреляционных прямых а0 = ~- и — = фЯк

взятые из табл. 6, нанесены в зависимости от содержания цементного теста в бетонной смеси рт.

Правильность теоретических предпосылок, заложенных в выражениях (V.13) или (V.14), подтверждается 41. В полном соответствии с ними величины коэффициентов а0 =

= -—'- примерно пропорциональны рт,  что соответствует

условию s = const (поскольку Ект = const). Значение постоянной s может быть оценено по тангенсу угла наклона аппроксимирующей прямой а0 == Дрт)- Как видно из 41, данная зависимость для бетонов и растворов в общем случае не совпадает, причем для тех и других s Ф SK, поскольку прочность чистого цементного камня, вообще говоря, отличается от его прочности в растворе или в бетоне. Вместе с тем это несовпадение не столь существенно. Для практических оценок допустимо принимать единую зависимость а0 — /(рт)> удовлетворяющую бетонам, растворам и чистому цементному камню, т. е. положить s ^ =* 5К = 800.

Значения коэффициентов т- == ф£кт (см. 41) практически свидетельствуют об отсутствии их закономерной связи с количеством цементного теста рТ. Это значит, что колебания параметра ф в формуле (V. 13) действительно обусловлены преимущественно различием упругих свойств заполнителей. Проверить количественное влияние указанного фактора на основании результатов рассмотренных опытов не удается, поскольку отсутствуют данные о модулях упругости использованных заполнителей.

- сборные конструкции из предварительно напряженного железобетонаизготовляют преимущественно из тяжелы
- Тяжелый бетон. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ЗАКОНОМЕРНОСТЕЙ СВЯЗИ МЕЖДУМОДУЛЕМ УПРУГОСТИ И ПРОЧНОСТЬЮ ТЯ
- Деформативность бетона под кратковременной нагрузкой при наличии егосцепления с арматурой
- Состояние бетона
- свойства характеристики бетона. ОЦЕНКА РОСТА ВО ВРЕМЕНИ ПРОЧНОСТНЫХХАРАКТЕРИСТИК БЕТОНА
- МОРОЗОСТОЙКОСТЬ БЕТОНА. морозостойкий бетон
- ОСОБЕННОСТИ ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНЫХ БЕТОНОВ
- ползучесть тяжелого бетона. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ СВЯЗЕЙ ПОЛЗУЧЕСТИ ИПРОЧНОСТИ ТЯЖЕЛОГО БЕТОНА НА
- усадка бетона. О СВЯЗИ ДЕФОРМАЦИЙ УСАДКИ С ВЛАГОФИЗИЧЕСКИМИ ПРОЦЕССАМИ ВБЕТОНЕ